Financial Modeling and Option Theory with the Truncated Levy Process
نویسنده
چکیده
In recent studies the truncated Levy process (TLP) has been shown to be very promising for the modeling of financial dynamics. In contrast to the Levy process, the TLP has finite moments and can account for both the previously observed excess kurtosis at short timescales, along with the slow convergence to Gaussian at longer timescales. In this paper I further test the truncated Levy paradigm using high frequency data from the Australian All Ordinaries share market index. I then consider an optimal option hedging strategy which is appropriate for for the early Levy dominated regime. This is compared with the usual delta hedging approach and found to differ significantly.
منابع مشابه
O ct 1 99 7 Financial Modeling and Option Theory with the Truncated Levy Process
In recent studies the truncated Levy process (TLP) has been shown to be very promising for the modeling of financial dynamics. In contrast to the Levy process, the TLP has finite moments and can account for both the previously observed excess kurtosis at short timescales, along with the slow convergence to Gaussian at longer timescales. I further test the truncated Levy paradigm using high freq...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملNormalized truncated Levy walks applied to the study of financial indices
This work is devoted to the study of the statistical properties of financial indices from developed and emergent markets. We performed a new analysis of the behavior of several financial indices by using a normalized truncated Levy walk model. We conclude that the truncated Levy distribution describes perfectly the evolution of the financial indices near a crash for both well-developed and emer...
متن کاملA fuzzy approach to option pricing in a Levy process setting
In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets. We assu...
متن کاملOutperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process
This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...
متن کامل